**BESS Community Forum** An Educational Event for Town of Brookhaven Residents

# An Introduction to Battery Energy Storage Systems

### Camille Warner Project Manager, Clean Energy Siting Team, NYSERDA cleanenergyhelp@nyserda.ny.gov



January 21, 2025

# Introduction

**Clean Energy Siting Team** 

cleanenergyhelp@nyserda.ny.gov

#### www.nyserda.ny.gov/Siting







New York Solar Guidebook for Local Governments







Inflation Reduction Act Guide For Local Governments and Other Tax-Exempt Entities Solar and Storage Projects



New York Wind Energy Guidebook for Local Governments



### Agenda

# Overview of NYS Energy Storage Initiative Intro to Battery Energy Storage Systems Why do we need BESS?

# Overview: NYS Energy Storage Initiative

### **Energy Storage Initiative**

A critical resource for enabling New York's clean energy future

#### **Benefits:**

- Avoid CO<sub>2</sub> emissions
- Reduce the impact of outages
- Allow intermittent renewables to be available during peak demand
- Create 30,000 jobs by 2030 in New York

#### **NYSERDA Opportunities**

- <u>~\$1.6 billion</u> market acceleration bridge incentives: available for retail and bulk storage systems
- <u>Technical Assistance</u>: permitting, interconnection, customer acquisition, and financing resources

#### 2025 STATEWIDE ENERGY STORAGE TARGET 1,500 MW 2030 STATEWIDE ENERGY STORAGE TARGET 6,000 MW

# Introduction to Battery Energy Storage Systems

- Potential Energy
- Energy Storage = Conversion of kinetic, electrical, or other forms of energy to potential energy.
- Examples of stored energy:
  - Electrical
  - Gravitational
  - Mechanical
  - Thermal





#### **Technology Types**



#### Pumped Hydroelectric



#### Mechanical •Compressed Air Energy Storage

Flywheel



#### Electrochemical

•Lead acid, Lithium Ion, Sodium Sulfur, Sodium Nickel Chloride

•Flow batteries – Vanadium redox, Zinc-bromine



#### Thermal

- •Sensible Molten Salt, Chilled Water
- •Latent ice storage, phase change materials
- Thermochemical storage



#### Chemical (Hydrogen)

•Power-to-Power (Fuel Cells, etc)

Power-to-Gas

- Battery energy storage can comprise a variety of different electrochemical makeups:
  - Lithium ion
  - Lead acid
  - Nickel-based
  - Flow batteries
- BESS building blocks:
  - Cells
  - Modules
  - Racks



|                       | Lead Acid   | Sodium-Sulfur | Flow Batteries | Lithium-lon  |
|-----------------------|-------------|---------------|----------------|--------------|
| Round-trip efficiency | 70-85%      | 70-80%        | 60-80%         | 85-95%       |
| Typical duration      | 2-6 hours   | 6-8 hours     | 4-12 hours     | 0.25-4 hours |
| Time to build         | 6-12 months | 6-18 months   | 6-12 months    | 6-12 months  |
| Operating cost        | High        | Moderate      | Moderate       | Low          |
| Space required        | Large       | Moderate      | Moderate       | Small        |
| Cycle life            | 500-2,000   | 3,000-5,000   | 5,000-8,000+   | 2,000-6,000+ |
| Technology maturity   | Mature      | Commercial    | Early-moderate | Commercial   |

Adapted from: http://cnee.colostate.edu/wp-content/uploads/2018/08/Storage\_July2018.pdf

# Battery Energy Storage Systems (BESS)

#### Residential



**Behind-the-meter** 

"Customer-side"

#### Commercial



#### Utility



Front-of-the-meter "Utility-side"

### Why are we talking about batteries?

As New York State transitions to renewable energy technologies like wind and solar, energy storage will play a critical role by providing power when the wind isn't blowing, or the sun isn't shining.



#### **Applications for BESS BATTERIES CAN PROVIDE UP TO 13 SERVICES TO THREE** STAKEHOLDER GROUPS Energy **Backup Power** Arbitrage **Services by Group:** Spin / Non-Spin Increased Reserve PV Self-OMER SER Consumption 1. Grid Services Frequency Regulation (ISOs / RTOs) ST Demand Service not 2. Utility Services Charge CENTRALIZED possible Reduction Voltage Support in Service not possible 3. Customer Services TRANSMISSION (Residential/Commercial) Time-of-Use Black DISTRIBUTION -----Bill Start Management BEHIND THE METER DISTRIBUTED Distribution Resource Deferral Adequacy Transmission Transmission **Congestion Relief** Deferral UTILITY SERVICES

#### CENTRALIZED

TRANSMISSION

DISTRIBUTION

### Grid Services (ISOs, RTOs)

Energy Arbitrage 
 Charging when electricity costs/demand are low, discharging when high; can also reduce curtailment of renewables

"Ancillary

Services"

- Spin/Non-Spin Reserve → Dispatch energy as needed to ensure that grid supply = demand
- Frequency Regulation → Quickly ensure generators are synchronized for grid stability



Black Start → Help large generators come online following system failure



## **Utility Services**

- Distribution Deferral
- Transmission Deferral

Defer costly upgrades to utility distribution and transmission infrastructure

CENTRALIZED TRANSMISSION DISTRIBUTION BEHIND THE METER

- Distribution Deferral Transmission Deferral Transmission Congestion Relief UTILITY SERVICES
- Transmission Congestion Relief: Mitigate congestion in areas with lots of generation or inadequate transmission capacity
  - Resource Adequacy: Have enough capacity to keep the lights on!

DISTRIBUTED

### **Customer Services (Residential/Commercial)**



- **Backup Power** → Power availability during outages
- Increased PV Self-Consumption → If paired with solar PV, ability to better utilize your own generation
- Demand Charge Reduction
- Time-of-Use Bill Management

Shift your consumption to save money during periods of high demand

Also known as demand or peak shaving or load shifting

### **Example: Peaker Replacement**





|                      | Gas Peaker                                   | Energy Storage                                 |
|----------------------|----------------------------------------------|------------------------------------------------|
| Range                | ~80% of capacity –minimum operational limits | 200% of capacity – can act as supply or demand |
| Utilization          | Low—only to meet peak demand or emergencies  | High—simultaneous grid services                |
| <b>Dispatch Time</b> | Minutes                                      | Seconds                                        |
| Standby              | Costs and emissions                          | No costs or direct emissions                   |

### **Clean Energy Siting Homepage**

#### Comprehensive Plan Guide

### Solar and Storage Projects – IRA Funding

Energy Storage Guidebook

Energy Storage Trainings for Local Governments

EV Charging Station Permitting Resources

Siting for Large-Scale Renewables

Solar Guidebook

### Technical Assistance and Workshops

Transitioning Underused Spaces

Wind Energy Guidebook

Clean Energy Siting Email List NYSERDA offers several resources to empower local governments with knowledge, training, and best practices to manage responsible clean energy development in their communities. These resources include step-by-step instructions and tools to guide the implementation of clean energy, including permitting processes, property taxes, siting, zoning, and more. Through NYSERDA's <u>Build-Ready Program</u>, local governments can partner with NYSERDA to turn underutilized land into a renewable energy project.

- <u>Clean Energy and Your Comprehensive Plan Guide</u>: Step-by-step instructions for local governments looking to incorporate clean energy goals and objectives into their communities' comprehensive plans.
- <u>Energy Storage Guidebook</u>: Information, tools, and step-by-step instructions to support local
  governments managing battery energy storage system development in their communities.
- <u>Energy Storage Trainings</u>: Prerecorded webinars and upcoming sessions related to responsible energy storage system development for local government officials, including municipal board members, first responders, and code enforcement officers.
- <u>EV Charging Station Permitting Resources</u>: Materials to help municipalities, developers, planners, and planning board members learn the basics of charging stations and to navigate the process for permitting and promoting EV charging station installations.
- <u>Siting for Large-Scale Renewables</u>: Information on State-level review processes for renewable generating facilities totaling 25 megawatts (MW) or greater.
- <u>Solar Guidebook</u>: Information, tools, and step-by-step instructions for local governments managing solar energy development in their communities.
- <u>Solar and Storage Projects</u> Inflation Reduction Act Funding: Resources and information on expanded funding opportunities for tax-exempt entities through the IRA to develop solar and energy storage projects.
- <u>Technical Assistance and Workshops</u>: List of free technical assistance on clean energy zoning and permitting available to local governments, including workshops for Continuing Education Credits.
- <u>Transitioning Underused Spaces</u>: Information for municipalities and private landowners on repurposing underutilized land such as brownfields, landfills, former industrial sites, and farms for renewable energy development.
- <u>Wind Energy Guidebook</u>: Information to support local governments managing wind energy development and project siting in their communities.

If you have a question on clean energy siting in your community, or need help with one of our resources, email <u>cleanenergyhelp@nyserda.ny.gov</u>.

Stay up-to-date with the latest about Clean Energy Siting by joining our email list for local government officials.

www.nyserda.ny.gov/Siting

Ask the team any question by sending an email to <u>cleanenergyhelp@</u> <u>nyserda.ny.gov</u>

